Skip to content

RL Insights Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Type to start searching
    GitHub
    GitHub
    • Home
      • CURL: Contrastive Unsupervised Representations for Reinforcement Learning
      • Asynchronous Methods for Deep Reinforcement Learning
      • Test notebook 1
      • Test notebook 2
      • Notebook Pitfalls
      • Running Long Tasks in Notebooks

    Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent¶

    https://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent

    https://srome.github.io/Async-SGD-in-Python-Implementing-Hogwild!/


    Last update: April 14, 2020
    Copyright © 2020 Florian Laurent
    powered by MkDocs and Material for MkDocs